Product Design Using Generative Adversarial Network: Incorporating Consumer Preference and External Data

Abstract

The development of Generative AI enables large-scale automation of product design. However, this automated process usually does not incorporate consumer preference information from a company’s internal dataset. Meanwhile, external sources such as social media and user-generated content (UGC) websites often contain rich product design and consumer preference information, but such information is not utilized by companies in design generation. We propose a semi-supervised deep generative framework that integrates consumer preferences and external data into product design, allowing companies to generate consumer-preferred designs in a cost-effective and scalable way. We train a predictor model to learn consumer preferences and use predicted popularity levels as additional input labels to guide the training of a Continuous Conditional Generative Adversarial Network (CcGAN). The CcGAN can be instructed to generate new designs of a certain popularity level, enabling companies to efficiently create consumer-preferred designs and save resources by avoiding developing and testing unpopular designs. The framework also incorporates existing product designs and consumer preference information from external sources, which is particularly helpful for small or start-up companies who have limited internal data and face the “cold-start” problem. We apply the proposed framework to a real business setting by helping a large self-aided photography chain in China design new photo templates. We show that our proposed model performs well in generating appealing template designs for the company.